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Abstract

Processor speeds are increasing rapidly, but memory speeds are not keeping pace. Image process-
ing is an important application domain that is particularly impacted by this growing performance
gap. Image processing algorithms tend to have poor memory locality because they access their
data in a non-sequential fashion and reuse that data infrequently. As a result, they often exhibit
poor cache and TLB hit rates on conventional memory systems, which limits overall performance.
Most current approaches to addressing the memory bottleneck focus on modifying cache organi-
zations or introducing processor-based prefetching. The Impulse memory system takes a different
approach: allowing application software to control how, when, and where data are loaded into a
conventional processor cache. Impulse does this by letting software configure how the memory
controller interprets the physical addresses exported by a processor. Introducing an extra level of
address translation in the memory controller enables an application to dynamically change how
its data are fetched from memory. Data that is sparse in memory can be accessed densely, which
improves both cache and TLB utilization, and Impulse hides memory latency by prefetching data
within the memory controller. We describe how Impulse improves the performance of three im-
age processing algorithms:volume rendering, image warping, and image filtering. We find that
for these codes, an Impulse memory system yields speedups of 40% to 226% over an otherwise
identical machine with a conventional memory system.
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1 Introduction

Because of the growing processor-memory performance gap, only applications with very high
degrees of locality are able to achieve performance near the peak potential of a modern processor.
Applications that suffer frequent cache or TLB misses find their performance limited by the speed
of the memory system.Image processingis an important class of algorithms particularly sensitive
to the memory bottleneck problem. Such algorithms are characterized by very high data bandwidth
needs, large cache footprints, lack of data reuse (i.e., poor temporal locality), and a tendency to
access data along non-unit strides. These behaviors make traditional caching much less effective
than it might be for other types of programs. Fortunately, image processing algorithms have the
advantage that their memory access patterns are often predictable, and this predictability combined
with their poor cache behavior makes the application domain a particularly interesting one for
memory system architects.

To attack the memory bottleneck problem, architects have increased the number and size of
processor caches and have added a variety of mechanisms to memory hierarchies. These mech-
anisms can be roughly split into three categories: (i) those that increase the hit rate of proces-
sor caches (e.g., skewed associative caches [Sez93] and prefetching [CB95, DDS95, Jou90]), (ii)
those that increase the processor’s ability to tolerate memory latency (e.g., multithreaded pro-
cessors [ACC+90, Egg97, TJNY98]), and (iii) those that migrate computation to or integrate the
processor with the memory system (e.g., IRAM [PAC+97] and RADRAM [OCS98]). These ap-
proaches all have merit, but they also have limitations. Many trade bandwidth for latency, placing
a heavier burden on the memory system by fetching unneeded data. In general, complex cache
organizations cannot keep up with aggressive processor cycle times, and thus are poor design can-
didates for the top levels of the memory hierarchy. Finally, most of the proposed mechanisms
require significant modifications to conventional processor or DRAM designs, and may interact
with other parts of the microarchitecture in complex ways. The upshot is that few have found their
way into commercial chips.

In contrast, we are developing an adaptable memory system that can decrease memory latency
and increase the hit rate of processor caches and TLBswithoutrequiring modifications to conven-
tional processor cores, caches, memory buses, or DRAMs. Instead, we concentrate onincreasing
the effective bandwidthof data supplied to the processor anddecreasing the observed latencyof
memory accesses that miss in the processor cache(s). TheImpulse adaptable memory systemrep-
resents a combined hardware/software approach to bridging the processor-memory performance
gap for applications with poor, but predictable, memory locality (e.g., streaming and vector-style
applications). Impulse enables several optimizations that let the application control how, when, and
where its data are loaded into the on-chip caches: (i) gathering sparse data into dense cache lines,
(ii) tiling without copying data, (iii) recoloring data structures without copying, and (iv) mapping
non-contiguous physical pages to a single TLB entry [SSC98]. To decrease the observed latency of
memory accesses, Impulse aggressively prefetches data within the memory controller [CHS+99]
and supports many in-flight DRAM accesses. Irregular or strided data structures are remapped so
that the elements occupy dense regions of cache, and prefetched data are buffered in the memory
controller until requested, to avoid cache pollution.

Previous work describes Impulse’s support for irregular applications and presents preliminary
results for two scientific applications on the Impulse memory system [CHS+99]. Here we re-
port the impact of Impulse optimizations on three types of image processing algorithms: volume
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rendering, separable image warps, and image filtering. These algorithms tend to traverse sparse
regions of large data structures, which leads to low cache utilization and high TLB pressure. Im-
pulse enables these applications to transform these sparse traversals of an address space to dense
traversals of a remapped address space. As a result, cache utilization goes up and TLB pressure
goes down. For these codes, our detailed simulations indicate that an Impulse memory system will
decrease wall-clock execution time by up to a factor of 3.26 over a similar, conventional memory
system.

2 Impulse System Architecture

Impulse expands the traditional virtual memory hierarchy by adding address translation hardware
to the memory controller. This optional, extra level of mapping is motivated by three observations:

� caches operate on contiguous “physical” memory at the granularity of a cache line,

� many levels of the modern cache hierarchies are physically indexed and tagged, and

� not all physical addresses in a traditional virtual memory system map to valid memory loca-
tions.

The Impulse system software configures the memory controller to reinterpret some of the phys-
ical addresses presented to it. In essence, Impulse “virtualizes” unused physical addresses to map
data in ways that improve the efficiency of on-chip caches.

The unused physical addresses constitute ashadow address space. Data items whose physi-
cal DRAM addresses are not contiguous can be mapped to contiguous shadow addresses, so that
sparse data can be compacted into dense cache lines before being transferred to the processor. To
map elements in these compacted cache lines back to physical memory, Impulse must recover their
offsets within the original data structure. To do this, Impulse first translates shadow addresses to
pseudo-virtual addresses, and then translates these to physical DRAM addresses. Thepseudo-
virtual address spacemirrors the virtual address space in its page layout, which allows Impulse to
remap data structures that lie on disjoint physical pages. The shadow!pseudo-virtual!physical
mappings all take place within the memory controller. The operating system manages all the re-
sources in the expanded memory hierarchy, and provides an interface for the application to specify
optimizations for particular data structures. The programmer (or the compiler, in the future) inserts
directives into the application code to configure the memory controller.

2.1 Hardware Organization

The organization of the Impulse controller architecture is depicted in Figure 1. The memory con-
troller includes:

� aShadow Descriptor Unitthat contains a small number of shadow-space descriptors, SRAM
buffers to hold prefetched shadow data, and logic to assemble sparse data retrieved from
DRAM into dense cache lines mapped in shadow space;
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Figure 1:Impulse memory controller organization.

� aPage Table Unitthat contains a simple ALU andMemory Controller TLB(MTLB) that map
addresses in dense shadow space to pseudo-virtual and then to physical addresses backed by
DRAM, along with a small number of buffers to hold prefetched page table entries; and

� a Scheduling Unitthat contains circuitry that orders and issues accesses to the DRAMs,
along with an SRAMMemory Controller Cache(Mcache) to buffer non-shadow data.

Since the extra level of address translation is optional, addresses appearing on the memory bus
may be to physical (backed by actual DRAM) or shadow memory space. Valid physical addresses
pass untranslated to the DRAM scheduler. The Page Table Unit uses the corresponding shadow
descriptor to turn shadow addresses into physical DRAM addresses. Currently, this translation can
take three forms, depending on how Impulse is used to access a particular data structure: direct,
strided, or scatter/gather.

Direct mappingtranslates a shadow address directly to a physical DRAM address. This map-
ping can be used to recolor physical pages without copying [CHS+99] or construct superpages
dynamically [SSC98].Strided mappingcreates dense cache lines from array elements that are not
contiguous in physical memory. The mapping function maps an addresssoffsetin shadow space to
pseudo-virtual addresspvaddr + stride� soffset, wherepvaddris the starting address (assigned by
the OS) of the data structure’s pseudo-virtual image.Scatter/gather mappinguses an indirection
vectorvector to translate an addresssoffsetin shadow space to pseudo-virtual addresspvaddr +
stride� vector[soffset]. Investigating support for other mappings is part of ongoing work.

2.2 Software Interface and OS Support

To exploit Impulse, the application first instructs the operating system to allocate a range of con-
tiguous virtual addresses large enough to map the necessary elements of a data structure. Sub-
sequent accesses to the original data structure are made via this new virtual image. Next, the
application requests that the new virtual data structure be mapped through shadow memory to the
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physical data elements. The OS responds by allocating a contiguous range of shadow addresses
and downloading two pieces of information to the memory controller: (i) a function that the Page
Table Unit uses to perform the mapping from shadow to pseudo-virtual space and (ii) a set of
page table entries that the MTLB uses to translate pseudo-virtual addresses to physical DRAM
addresses.

As an example, consider remapping the diagonal of ann � n matrix A[] . Figure 2 depicts
the memory translations for both the matrixA[] and the remapped image of its diagonal. The OS
allocates shadow addresses from a pool of unused physical addresses (i.e., those not backed by
DRAM or mapped to device registers). It also allocates pseudo-virtual pages so that no remapped
data structures overlap in pseudo-virtual space. The OS interface allows alignment and offset
characteristics of the remapped data structure to be specified, which gives the compiler or the
application some control over L1 cache behavior. In the current Impulse design, coherence is
maintained in software: the OS, the compiler, or the application programmer must keep aliased
data consistent by flushing the cache explicitly.

3 Benchmark Algorithms

We examine three image processing algorithms that stress memory system performance:

� Volume renderinggenerates an image of a volume from a given point of view.

� Separable image warpingalgorithms transform images by performing successive, separate,
one-dimensional transformations. Our benchmark rotates an image by performing three one-
dimensional shears.

� Image filteringapplies a numerical filter function that modifies the appearance of an image.
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These operations differ from the benchmarks traditionally used to evaluate memory system
behavior in that they often:

� need to be performed in real time, as part of an interactive application;

� “stream” through large amounts of data with little reuse, and thus have poor temporal locality
and high bandwidth requirements;

� access their data along non-unit strides (i.e., walk data along a spatial dimension that does
not match how the data are laid out);

� touch many pages, putting enormous pressure on processor TLBs.

3.1 Volume Rendering

We examine the volume rendering technique demonstrated by Parker et al. [PSL+98]. Their ap-
proach uses brute-force ray tracing to perform interactive isosurfacing of very large rectilinear data
sets. In contrast to other volume rendering methods, this method does not generate an explicit rep-
resentation of the isosurface and render it with a z-buffer. For each pixel, Parker et al. trace a ray
through a volume and perform an analytic isosurface intersection computation. The first isosurface
intersected determines the value of the pixel corresponding to that ray. The method has a high
intrinsic computational cost, but its simplicity and scalability make it ideal for large data sets on
current high-end systems.

Traditionally, ray tracing has not been used for volume rendering because it suffers from poor
memory behavior. Each ray must be traced through a potentially large fraction of the volume,
which gives rise to two problems. First, many memory pages may need to be touched, which
results in high TLB pressure. Second, a ray with a high angle of incidence may visit only one
volume element (voxel) per cache line, in which case bus bandwidth will be wasted loading un-
necessary data that pollutes the cache. By carefully hand-optimizing their ray tracer’s memory
access patterns, Parker et al. achieve acceptable speeds for interactive rendering (about 10 frames
per second). They improve data locality by organizing the data set into a multi-level spatial hierar-
chy of tiles, each composed of smaller cells. The smaller cells provide good cache-line utilization.
“Macro cells” are created to cache the minimum and maximum data values from the cells of each
tile. These macro cells enable a simple min/max comparison to detect whether a ray intersects an
isosurface within the tile. Empty macro cells need not be traversed.

Careful hand-tiling of the volume data set can yield much better memory performance, but
choosing the optimal number of levels in the spatial hierarchy and sizes for the tiles at each level is
extremely difficult, and the resulting code is hard to understand and maintain. Impulse can deliver
better performance than hand-tiling at a lower programming cost. There is no need to preprocess
the volume data set for good memory performance: the Impulse memory controller can remap it
dynamically. In addition, the source code retains its readability and modifiability.

Our benchmark uses an orthographic tracer whose rays all intersect the screen surface at right
angles, producing images that lack perspective and appear far away. Visualization systems of-
ten use orthographic images because they are relatively simple to compute, thus this algorithm
represents a reasonable, real-world benchmark.
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screen

volume

Figure 3:Volume rendering via orthographic ray tracing. The picture on the left shows rays (which are all
perpendicular to the viewing screen) being traced through a volume to determine pixel values. The one on
the right illustrates how each ray visits a sequence of voxels in the volume; Impulse optimizes voxel fetches
from memory via indirection vectors representing the voxel sequences for each ray.

We use Impulse to extract the voxels that a ray could intersect in a traversal of the volume.
The right-hand side of Figure 3 illustrates how each ray visits a certain sequence of voxels in the
volume. Instead of fetching cache lines full of unnecessary voxels, Impulse can remap a ray to the
voxels it requires so that only useful voxels will be fetched.

3.2 Separable Image Warping

Image warping refers to any algorithm that performs an image-to-image transformation.Sepa-
rable image warpsare those that can be decomposed into multiple one-dimensional transforma-
tions [CS80]. For separable warps, Impulse can be used to improve the cache and TLB perfor-
mance of one-dimensional traversals orthogonal to the image layout in memory. Our three-shear
image rotation benchmark is an example of a separable image warp. This algorithm rotates a 2-
dimensional image around its center in three stages, each performing a “shear” operation on the
image, as illustrated in Figure 4. The algorithm thus implements a two-dimensional image trans-
formation using several one-dimensional transformations, each of which is simpler to implement,
faster to run, and has fewer visual artifacts. For example, to rotate an image clockwise, we first
shift all pixels to the right, each row shifted by a different amount. Next we shift the pixels down,
and finally we shift them all back to the left.

The underlying math is straightforward. Rotation through an angle� can be expressed as matrix
multiplication:  

x0

y0

!
=

 
cos � sin �

� sin � cos �

! 
x

y

!
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(A) (B) (C) (D)

Figure 4:Three-shear rotation of an image counter-clockwise through one radian. The original image (A)
is sheared horizontally (B). That image is sheared upwards (C). The final rotated image (D) is on the right.

The rotation matrix can be broken into three shears as follows: 
cos � sin �

� sin � cos �

!
=

 
1 0

� tan �

2
1

! 
1 sin �

0 1

! 
1 0

� tan �

2
1

!

None of the shears requires scaling (since the determinant of each matrix is 1), so each involves
just a shift of rows or columns. Not only is this algorithm simple to understand and implement, it
is robust in that it is defined over all rotation values from 0 to90�. In contrast, two-shear rotations
fail for rotation angles near90�.

We assume a simple image representation of an array of pixel values. The second shear op-
eration (the one along they axis) walks along the column of the image matrix, which gives rise
to poor memory performance for large images. Impulse can transpose the matrix without copying
it, so that walking along columns in the image is replaced by walking along rows in a transposed
matrix. As a result, cache and TLB performance both increase.

3.3 Image Filtering

Image filtering [GV97] is a common image processing operation used for a variety of purposes.
For instance, it may be used to attenuate high-frequency components caused by noise in a sam-
pled image, to adjust an image to different geometry, to detect or enhance edges within an image,
or to create various special effects. Box, Bartlett, Gaussian, and binomial filters are common in
practice. Each of these modifies the input image in a different way, but all share similar compu-
tational characteristics. We therefore concentrate only on a single, representative class,binomial
filters [GV97].

In binomial filtering, each pixel in the output image is computed by applying a two-dimensional
“mask” to the input image. The filtered pixel value is calculated as a linear function of the neigh-
boring pixel values of the original image and the corresponding mask values. For example, for an
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Figure 5:Example of binomial image filtering. The original image is on the left, and the filtered image is
on the right.

order-5 binomial filter, the value of pixel(i; j) in the output image will be36
256

� (i; j) + 24

256
� (i�

1; j) + 24

256
� (i+ 1; j) + :::. Binomial filtering is thus computationally similar to a single step of a

successive over-relaxation algorithm for solving differential equations. To avoid edge effects, the
original image boundaries must be extended before applying the masking function.

In practice, many filter functions, including binomial, are “separable,” meaning that they are
symmetric and can be decomposed into a pair of orthogonal linear filters. For example, a two-
dimensional mask can be decomposed into two, one-dimensional, linear masks ([1

16
; 4

16
; 6

16
; 4

16
; 1

16
])

— the two-dimensional mask is simply the outer product of this one-dimensional mask with its
transpose. The process of applying the mask to the input image can be performed by sweeping
first along the rows and then the columns, calculating a partial sum at each step. Each pixel in
the original image is used only for a short period of time (during the time the mask is “passing
over” it), which makes filtering a pure streaming application. Impulse can transpose both the input
and output image arrays without copying, giving the column sweep much better cache behavior.
Figure 5 illustrates a small black-and-white sample image before and after the application of a
small binomial filter.

4 Simulation Environment

Our studies use the Paint simulator [SKS96], which models a variation of a 120 MHz, single-issue,
HP PA-RISC 1.1 processor running a BSD-based microkernel, and a 120 MHz HP Runway bus.
The 32K L1 data cache is non-blocking, single-cycle, write-back, write-around, virtually indexed,
physically tagged, and direct mapped with 32-byte lines. The 256K L2 data cache is non-blocking,
write-allocate, write-back, physically indexed and tagged, 2-way set-associative, and has 128-byte
lines. Instruction caching is assumed to be perfect. The TLB is unified I/D, single-cycle, and fully
associative, with a not-recently-used replacement policy. In addition to the main TLB, a single-
entry micro-ITLB holds the most recent instruction translation. Kernel code and data structures are
mapped using a single block-TLB entry that is not subject to replacement. The split-transaction
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bus multiplexes addresses and data. The memory system modeled contains four DRAM buses and
16 banks of SDRAM, and has a total memory latency of 44-46 cycles [CHS+99].

The simulated Impulse memory controller (described in Section 2.1) is based on the HP mem-
ory controller [HMM96] used in servers and high-end workstations. We model eight shadow
descriptors, each of which is associated with a 512-byte SRAM buffer. The controller prefetches
the corresponding shadow data into these fully associative buffers of four 128-byte lines. A 4K-
byte, SRAM Mcache holds prefetched, non-shadow data within the Scheduler Unit. The Mcache
is four-way set associative with 32 lines of 128 bytes. The MTLB is two-way associative, has 128
eight-byte entries (the same size as the entries in the kernel’s page table), and includes two 128-bit
buffers used to prefetch consecutive lines of page table entries on an MTLB miss. Prefetched page
table entries are also stored in the Mcache. If an MTLB miss hits in the buffers, the required entry
can be transferred into the MTLB in one cycle. Otherwise the MTLB initiates an Mcache access,
and if that misses, it initiates a DRAM access to retrieve the entry.

References to shadow addresses incur a minimum three-cycle delay, and complex mapping
functions cause larger delays. Prefetching within the memory controller reduces the impact of
the extra translation delays. To keep the remapping circuitry simple and fast, we require that the
various dimensions of data structures used in strided mappings be powers of two in size. This
avoids the need for a divider in Impulse. All remapped data structures are page-aligned, and
the elements being manipulated must be powers of two in size. We implemented the Impulse
system calls within Paint’s microkernel such that applications can use Impulse without violating
interprocess protection.

Even though Paint’s PA-RISC processor is single-issue, we model a pseudo-quad-issue super-
scalar machine by issuing four instructions each cycle without checking dependencies. While this
model is unrealistic for gathering processor microarchitecture statistics, it stresses the memory
system in a manner similar to a real superscalar processor.

5 Results

In our experiments we measure the performance benefits of using Impulse to remap physical ad-
dresses. These results are conservative, as we have not yet modified the Impulse Scheduler Unit to
exploit bank parallelism, sophisticated DRAM interfaces, or device characteristics. We examine
memory system performance for at least two versions of each benchmark: a hand-tuned algorithm
running on a conventional memory system, and an algorithm hand-modified to run on Impulse.

5.1 Volume Rendering

For simplicity, our current version of this benchmark assumes that the screen plane is parallel to the
volume’sz axis. This assumption has the advantage of letting us compute an entire plane’s worth
of indirection vector at once, so we no longer need to remap addresses for every ray. Extending
our methodology to arbitrary viewing angles is part of ongoing work.

The measurements we present are for two particular viewing angles. Table (A) in Figure 6
shows results when the screen is parallel to they axis, so that the rays exactly follow the layout
of voxels in memory (we assume anx-y-zlayout order). Table (B) shows results when the screen
is parallel to thex axis — so that the rays exhibit the worst possible cache and TLB behavior in
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Original Indirection Impulse

Time 264 249 185
L1 hit ratio 96.8% 96.5% 96.6%
L2 hit ratio 0.8% 0.9% 0.9%
avg load time 2.0 2.1 1.8
TLB misses .30 .32 .31
speedup — 6.0% 42.7%

Original Indirection Impulse

Time 1030 1000 316
L1 hit ratio 81.8% 83.2% 97.5%
L2 hit ratio 0.8% 1.1% 0.4%
avg load time 8.4 7.6 4.7
TLB misses 8.46 8.47 4.42
speedup — 3.0% 226%

(A) (B)

Figure 6:Simulated results for orthographic volume rendering with various memory system configurations.
Times are in millions of cycles; the L1 hit ratio is the number of L1 hits/total loads; the L2 hit ratio is the
number of L2 hits/total loads; the average load time is the average number of cycles that a load takes; TLB
misses is the number of user data misses in millions. In (A) the rays follow the memory layout of the image;
in (B) they are perpendicular to the memory layout.

thex-y planes. These two sets of data points represent the extremes in memory performance for a
given plane.

In our data, the measurements labeled “Original” are of a ray tracer that uses macro-cells
to reduce the number of voxels traversed, but that does not tile the volume. The macro-cells
are 4�4�4 voxels in size. The results labeled “Indirection” use macro-cells and address voxels
through an indirection vector. Finally, the results labeled “Impulse” use Impulse to perform the
indirection lookup at the memory controller.

Even in (A), where the rays are parallel to the array layout, Impulse delivers a substantial per-
formance gain. The speedup comes from precomputing the voxel offsets, which reduces execution
time by approximately 70 million cycles. Although the experiment reported in the Indirection
column precomputes these offsets, the speedup is smaller because the indirection vector must be
loaded from memory. With Impulse, the accesses to the indirection vector are performed only
within the memory controller, which hides the access latencies.

In Table (B), where the rays are perpendicular to the voxel array layout, Impulse yields a much
larger performance gain — 226%. The improvement comes both from increasing the cache hit
ratio (since no useless voxels are loaded into the cache) and reducing the number of TLB misses
(since fewer pages are addressed). Approximately 145 million of the saved cycles are due to TLB
effects; the rest are due to improved cache behavior.

5.2 Three-Shear Image Rotation

Table 1 illustrates performance results for rotating a color image clockwise through one radian.
The image contains 24 bits of color information, as in a “.ppm” file. In the original version of our
code, adapted from Wolberg [Wol90], the in-memory representation of the image consists of3N
bytes, whereN is the number of pixels. We measure two other versions: a hand-tiled version of the
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Original Original, padded Hand-tiled Hand-tiled, padded Impulse

Time 218 228 106 93.5 78.7
L1 hit ratio 77.2% 78.0 89.1% 91.8% 96.6%
L2 hit ratio 5.0% 5.5 4.8% 3.9% 0.6%
avg load time 4.8 4.8 2.0 1.97 2.2
TLB misses 3.62 4.60 .92 .92 .03
speedup — -4.3% 106% 133% 177%

Table 1:Simulation results for performing a 3-shear rotation of a 1K-by-1K 24-bit color image. Times are
in millions of cycles. The L1 hit ratio is the number of L1 hits/total loads; the L2 hit ratio is the number of
L2 hits/total loads; the average load time is the average number of cycles that a load takes; TLB misses is
the number of user data misses in millions.

code, in which the traversal during the vertical shear visits the source image in a blocked fashion,
and a version adapted to Impulse, in which the matrices are transposed at the memory controller.
The Impulse version requires that each pixel be padded to four bytes, because Impulse operates on
power-of-two object sizes. Without this restriction, a divider would be necessary at the controller.
To quantify the performance effect of padding, we also measure the results for the non-Impulse
versions of the code using padded pixels.

The performance differences between the versions of the rotation code are entirely due to cycles
saved during the vertical shear. The horizontal shears exhibit good memory behavior (in row-major
layout), and so are not a performance bottleneck.

Impulse increases the cache hit rate from roughly 78% to 97% and reduces the number of TLB
misses by two orders of magnitude. The latter effect saves approximately 75 million cycles of
kernel time, which constitutes most of Impulse’s benefit.

The tiled version of the rotation code does not walk each entire column for the vertical shear.
Instead, it walks through all columns 32 pixels at a time. This yields a higher hit rate than the
original program, but not as great as that of the Impulse code. The reason for this difference is that
tiles in the source matrix are sheared in the destination matrix, so even though cache performance is
nearly perfect for the source matrix, it suffers for the destination. For the same reason, the decrease
in TLB misses for the tiled code is not as great as that for the Impulse code. Finally, prefetching is
not as effective with tiling (compared to Impulse), because prefetching moves across rows, whereas
the traversal moves down columns.

Using Impulse requires that the size of matrix elements (pixels) be a power of two. As a result,
to store a 24-bit color image, the Impulse code uses 33% more memory. When we measured the
performance of the non-Impulse code with the same padding, we found that padding decreases the
performance of the original program, but increases the performance of the tiled program.

The original program is memory-bound. When we add padding, we degrade the memory
performance even more, because each cache line fetched contains useless pad bytes. In contrast,
padding improves the performance of the tiled program because the increase in memory traffic is
subsumed by the reduction in load, shift, and mask operations: manipulating word-aligned pixels
is faster than manipulating byte-aligned pixels.
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Tiled Impulse

Time 317 219
L1 hit ratio 98.9% 99.8%
L2 hit ratio 0.9% 0.2%
avg load time 1.2 1.0
TLB misses 3.51 0.00
speedup — 44.7%

Table 2: Simulated results for image filtering with various memory system configurations. Times are in
millions of cycles. The L1 hit ratio is the number of L1 hits/total loads; the L2 hit ratio is the number of L2
hits/total loads; the average load time is the average number of cycles that a load takes; TLB misses measure
the number of user data misses in millions; speedup is the “Original, no prefetch” time divided by the time
for the system being compared, minus one.

Even with padding, the tiled version of the rotation code is slower than Impulse. First, the
tiled version of the shear uses more cycles recomputing (or saving and restoring) each column’s
displacement whenever it visits that column in a tile. For our input image, this displacement is
computed1024

32
= 32 times, since the column length is 1024 and the tile height is 32. The Impulse

code only needs to compute each column’s displacement once, since each column is only visited
once.

5.3 Image Filtering

Table 2 presents the results of running an order-121 binomial filter over a 32�1024 color image. As
with volume rendering, the Impulse version of the code pads each pixel to four bytes. Performance
differences between a hand-tiled version of the algorithm and the Impulse version arise from the
vertical pass over the data. The tiled version suffers 15 times as many L1 cache misses and 200
times as many TLB faults. As a result, the non-Impulse version of the algorithm spends 16 million
user cycles blocked waiting for memory and 68 million total cycles in the kernel (mostly handling
TLB misses), for a memory system overhead of over one-quarter of the total execution time. In
contrast, the Impulse version of the algorithm spends only 3.4 million cycles waiting for memory
and 1 million cycles performing kernel operations — a negligible memory overhead compared to
the total running time of 219 million cycles.

Impulse improves the memory behavior of the image filtering code in two ways. First, when
the original algorithm performs the vertical filtering pass, it touches more pages per iteration than
the processor TLB can hold. This leads to the high kernel overhead observed in these runs. Since
the Impulse version of the code accesses what appear to the processor to be contiguous addresses,
it suffers a negligible number of TLB faults. Second, the remapped version of the algorithm suffers
no conflict cache misses during the vertical phase, again because the data appear to be stored in
sequential physical and virtual addresses. In contrast, the non-Impulse version suffers occasional
L1 cache misses because image cache lines conflict within the L1 cache. Although both versions
of the algorithm touch each data element the same number of times, the Impulse version has near-
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perfect temporal and spatial locality in the L1 cache, while the conventional tiled version does
not.

6 Related Work

The recent literature abounds with arguments that traditional caching, no matter how hard we push
it, cannot bridge the growing processor-memory performance gap. Burger et al. [BGK96] demon-
strate that dynamic caching uses memory inefficiently, postulating that pin bandwidth will be a
severe performance bottleneck for future microprocessors. They calculate cache efficiency, traffic
ratios, traffic inefficiencies, and effective pin bandwidths for different levels of the memory hierar-
chy, and find that the percentage of live data in the cache is generally under 20% and that current
cache sizes are often thousands of times larger than an optimal cache. Impulse not only improves
cache efficiency for many data structures that traditionally have had extremely poor cache perfor-
mance, but it improves traffic efficiency as well. Data prefetched within the memory controller is
transferred onto the processor chip only when requested.

Many others have investigated memory hierarchies that incorporate stream buffers. Most of
these focus on non-programmable buffers to perform hardware prefetching of consecutive cache
lines, such as the prefetch buffers introduced by Jouppi [Jou90]. Even though such stream buffers
are intended to be transparent to the programmer, careful coding is required to ensure good mem-
ory performance. Palacharla and Kessler [PK94] investigate the use of similar stream buffers to
replace the L2 cache and Farkas et al. [FCJV97] identify performance trends and relationships
among the various components of the memory hierarchy (including stream buffers) in a dynami-
cally scheduled processor. Both studies find that dynamically reactive stream buffers can yield sig-
nificant performance increases. All of these mechanisms prefetch cache lines speculatively, so they
may bring unneeded data into the processor cache(s). This increases memory system bandwidth
requirements, and decreases effective bandwidth. Farkas et al. mitigate this problem by imple-
menting an incremental prefetching technique that reduces stream buffer bandwidth consumption
by 50% without decreasing performance.

In contrast, systems that prefetch within the memory controller itself never waste system bus
bandwidth fetching unneeded data into the processor chip. McKee et al.’s Stream Memory Con-
troller [MAC+96] combines programmable stream buffers and prefetching within the memory con-
troller with intelligent DRAM scheduling. For vector or streaming applications with predictable
memory reference patterns, this system dynamically reorders stream accesses to exploit parallelism
in the memory system and to exploit locality of reference among the DRAM page buffers. In the
same vein, Corbal et al. [CEV98] propose aCommand Vector Memory Systemthat exploits paral-
lelism and locality of reference to improve effective bandwidth for vector accesses on out-of-order
vector processors with SDRAM memories.

The Imagine media processor is a stream-based architecture with a bandwidth-efficient stream
register file [RDK+98]. The streaming model of computation exposes parallelism and locality in
applications, which makes such systems an attractive domain for intelligent DRAM scheduling.

Other researchers have explored ways to give software control over memory hierarchy organi-
zation. Yamada et al. [Yam95] describe memory hierarchy and instruction set changes to support
combined data relocation and prefetching into L1 cache. While such an approach yields improved
L1 caching efficiency, performing relocation at the processor saves no bus bandwidth — since
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transformations are performed on virtual addresses, the performance of physically indexed caches
is unaffected. The Morph project [ZDS+97] proposes integrating programmable logic throughout
the memory hierarchy, thereby giving applications control over issues such as memory interleav-
ing, cache organization, and caching policies. Morph, like Impulse, supports application-specific
locality optimizations, but it requires radical changes to conventional processor and cache designs,
which will slow its likely adoption in mainstream systems.

Finally, researchers have recently proposed attacking the memory bottleneck from the opposite
direction — by selectively moving computation to the memory, rather than always moving data
to the processor. For example, integrated processor/memory architectures such as UC Davis’s
RADram [OCS98] and UC Berkeley’s IRAM [PAC+97] integrate some form of processor into
the memory system. These architectures are adept at handling dense streaming or vector-style
applications when all the data reside within a single DRAM chip. However, once the data needed to
perform a computation cross chip boundaries, these systems effectively become a specialized form
of distributed memory multiprocessor, with all of the attendant complexities. While processor-in-
memory architectures are clearly useful in a variety of special-purpose domains, much research
remains to be done to determine the extent to which they can be integrated into a general-purpose
compute environment.

7 Conclusions

Image processing is an increasingly important application domain from a commercial standpoint,
but it has traditionally not been studied closely by computer architects. In this paper, we have
described algorithms representative of three major classes of image processing algorithms (volume
rendering, image warping, and image filtering). These algorithms all place tremendous pressure
on the memory systems of conventional machines, which has led to the development of a wide
range of special-purpose image processing systems. By allowing these algorithms to control how
the image streams are mapped into the processor’s cache(s) and TLB, the Impulse memory system
achieves performance improvements ranging from 40% to 226% on an otherwise conventional
system.

More work remains to be done in terms of developing memory system support for high-
performance image processing. We recently initiated a collaboration with the image processing,
vision, and visualization groups at Utah, and are studying other classes of image processing al-
gorithms that should achieve performance improvements on Impulse. Texture mapping, image
extraction, image encoding-decoding, and image compression-decompression all appear to be at-
tractive candidates for optimization.

We are also studying other application areas where Impulse’s configurable memory system
should support significant performance improvements. One class of applications that is particularly
attractive consists of vectorized codes. In a sense, a system with an Impulse memory controller
(which can prefetch and pack sparse data into dense “vectors”), combined with the large number
of functional units in a modern superscalar processor, resembles a vector machine. Just as a Cray
T-90’s vector load-store unit exploits the bandwidth of the Cray memory interconnect to gather
vectors into its vector registers, we expect that an Impulse memory controller will be able to exploit
the bandwidth of a heavily banked DRAM system to gather vectors that can be loaded into the L1
cache.
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